Background
Vertical transmission (VT) of arboviruses (arthropod-borne viruses) can serve as an essential link in the transmission cycle during adverse environmental conditions. The extent of VT among mosquito-borne arboviruses can vary significantly among different virus families and even among different viruses within the same genus. For example, orthobunyaviruses exhibit a higher VT rate than orthoflaviviruses and alphaviruses. Mosquitoes are also the natural hosts of a large number of insect-specific viruses (ISV) that belong to several virus families, including Bunyaviridae, Flaviviridae, and Togaviridae. Cell fusing agent virus (CFAV), an insect-specific orthoflavivirus, displays higher VT rates than other dual-host orthoflaviviruses, such as Zika and dengue viruses. High VT rates require establishment of stabilized infections in the germinal tissues of female vectors. To delve deeper into understanding the mechanisms governing these differences in VT rates and the establishment of stabilized infections, the ovary infection patterns and VT of Zika virus (ZIKV) and CFAV were compared.
Methods
Laboratory colonized Aedes aegypti females were infected with either ZIKV or CFAV by intrathoracic injection. Ovary infection patterns were monitored by in situ hybridization using virus-specific probes, and VT was determined by detecting the presence of the virus among the progeny, using a reverse-transcription quantitative polymerase chain reaction (PCR) assay.
Results
Both ZIKV and CFAV infect mosquito ovaries after intrathoracic injection. Infections then become widespread following a non-infectious blood meal. VT rates of ZIKV are similar to previously reported results (3.33%). CFAV, on the contrary transmits vertically very rarely. VT was not observed in the first gonotrophic cycle following intrathoracic injection, and only rarely in the second gonotrophic cycle. VT of CFAV is mosquito population independent, since similar results were obtained with Aedes aegypti collected from two different geographic locations.
Conclusions
Although CFAV infects mosquito ovaries, the occurrence of VT remains infrequent in artificially infected Ae. aegypti, despite the observation of high VT rates in field-collected mosquitoes. These results suggest that infections of insect-specific viruses are stabilized in mosquitoes by some as yet unidentified mechanisms.
Graphical Abstract