A uniquely sensitive method for ceramide domain detection allowed us to study in detail cholesterol-ceramide interactions in lipid bilayers with low (physiological) ceramide concentrations, ranging from low or no cholesterol (a situation similar to intracellular membranes, such as endoplasmic reticulum) to high cholesterol (similar to mammalian plasma membrane). Diverse fluorescence spectroscopy and microscopy experiments were conducted showing that for low cholesterol amounts ceramide segregates into gel domains that disappear upon increasing cholesterol levels. This was observed in different raft (sphingomyelin/cholesterol-containing) and non-raft (sphingomyelin-absent) membranes, i.e. mimicking different types of cell membranes. Cholesterol-ceramide interactions have been described mainly as raft sphingomyelin-dependent. Here sphingomyelin independence is demonstrated. In addition, ceramide-rich domains re-appear when either cholesterol is converted by cholesterol oxidase to cholestenone or the temperature is decreased. Ceramide is more soluble in cholesterol-rich fluid membranes than in cholesterol-poor ones, thereby increasing the chemical potential of cholesterol. Ceramide solubility depends on the average gel-fluid transition temperature of the remaining membrane lipids. The inability of cholestenone-rich membranes to dissolve ceramide gel domains shows that the cholesterol ordering and packing properties are fundamental to the mixing process. We also show that the solubility of cholesterol in ceramide domains is low. The results are rationalized by a ternary phospholipid/ceramide/cholesterol phase diagram, providing the framework for the better understanding of biochemical phenomena modulated by cholesterol-ceramide interactions such as cholesterol oxidase activity, lipoprotein metabolism, and lipid targeting in cancer therapy. It also suggests that the lipid compositions of different organelles are such that ceramide gel domains are not formed unless a stress or pathological situation occurs.Cholesterol (Chol) 3 is the most abundant sterol in mammalian plasma membrane and has unique biophysical properties (1, 2). Chol interacts with the high melting temperature (T m ) sphingolipids (SL) in the membrane, leading to the formation of SL/Chol-enriched microdomains (so-called lipid rafts). These domains are in a more ordered state (usually referred to as liquid-ordered (l o ) phase) than the bulk membrane (liquid-disordered phase (l d )) (3, 4). Ceramide (Cer) is an SL formed in stress situations either from sphingomyelin (SM) in rafts or synthesized de novo by serine palmitoyltransferase and ceramide synthase. Both of these processes can be induced by diverse stimuli (5). Cer-induced membrane alterations (e.g. raft fusion into large signaling platforms (6)) were proposed to be the mechanism by which this lipid mediates diverse cellular processes, namely apoptosis (7-10). Cer presents an unusually small polar headgroup and in general very high gel-fluid T m (e.g. for palmitoyl-Cer (PCer) it is ϳ90°C) (11)....