Antibiotics are used irresponsibly at every opportunity to treat mild or even viral infections. Accordingly antibiotics have been used in massive amounts in agriculture as a preventive provision against bacterial diseases and to promote the growth of animal feedstock such as poultry, beef and pigs, respectively. Consequently many reports of the past decades contained numerous treatises on bacteria's ability to become resistant to antibiotics what in turn is a growing issue in health care. For example a diverse set of clinical pathogens which includes multi-drug-resistant strains of Mycobacterium tuberculosis, Staphylococcus aureus and various Enterococci species are now nearly untreatable with standard antibiotics and pose a growing threat to patients in hospitals and the community at large. Furthermore, antibiotic resistance genes (ARGs) are prevalent in environments resulting in enhanced health hazard risks. Moreover, conjugative transfers of ARGs help to disseminate multiple antibiotic resistant pathogens which pose a serious threat to humans if allowed to enter the food chain. Thus, better knowledge and more information on the fate of antibiotics as well as the development and spread of antibiotic resistance bacteria and genes in the environment are required to understand underlying processes. This review is an effort to emphasize how biotic environments become polluted initiated by several antibiotic applications via human beings.