Many social interactions rely upon mutual information exchange: one member of a pair changes in response to the other while at the same time producing actions that alter the behavior of the other. However, little is known about how such social processes are integrated in the brain. Here, we used a specially designed dualelectroencephalogram system and the conceptual framework of coordination dynamics to identify neural signatures of effective, real-time coordination between people and its breakdown or absence. High-resolution spectral analysis of electrical brain activity before and during visually mediated social coordination revealed a marked depression in occipital alpha and rolandic mu rhythms during social interaction that was independent of whether behavior was coordinated or not. In contrast, a pair of oscillatory components (phi 1 and phi2) located above right centroparietal cortex distinguished effective from ineffective coordination: increase of phi 1 favored independent behavior and increase of phi 2 favored coordinated behavior. The topography of the phi complex is consistent with neuroanatomical sources within the human mirror neuron system. A plausible mechanism is that the phi complex reflects the influence of the other on a person's ongoing behavior, with phi 1 expressing the inhibition of the human mirror neuron system and phi 2 its enhancement.brain oscillations ͉ electroencephalography ͉ mirror neuron system ͉ phi rhythm ͉ coordination dynamics T wo anatomically overlapping yet functionally distinct systems in the brain have been identified when we interact with others. The first, historically called the motor preparation system, consists of cortical circuitry that includes the premotor cortex, the supplementary motor area, and parts of the inferior parietal cortex (1). This system is deemed responsible for implementing the intention to realize one's own actions (2, 3). The second, the mirror-neuron system (4, 5), allows for the actions of others to be perceived (6), embodied (7), understood (8, 9), and appropriated (10) by our own motor system. Its main components are the inferior parietal sulcus, the premotor cortex (5,11,12), and the superior temporal sulcus (STS) (although the motor properties of STS neurons coactivated during observation and execution are presently the subject of some debate; see ref. 6). In evolutionary terms, the mirror-neuron system may facilitate important functions of skill learning, language acquisition, everyday joint action, and interpersonal coordination (13). A common viewpoint (5, 14) is that the mirror-neuron system is inactive most of the time but is activated upon request. Research on pathological imitation (15) suggests a further possibility, namely, that the mirror-neuron system is constantly available for use but is actively suppressed by inhibition (16).Neurophysiological studies of the influence of one person's actions on another have so far assessed the behavioral acts of pairs of individuals one at a time, i.e., one acts while the other observes; or o...