The Food Process Robot Intelligent System (FPRIS) integrates a 3D-printed six-axis robotic arm with Artificial Intelligence (AI) and Computer Vision (CV) to optimize and automate the coffee roasting process. As an application of FPRIS coffee roasting, this system uses a Convolutional Neural Network (CNN) to classify coffee beans inside the roaster and control the roaster in real time, avoiding obstacles and empty spaces. This study demonstrates FPRIS’s capability to precisely control the Degree of Roasting (DoR) by combining gas and image sensor data to assess coffee bean quality. A comparative analysis between the Preliminary Coffee Sample (PCS) and Validation Coffee Sample (VCS) revealed that increasing roast intensity resulted in consistent trends for both samples, including an increase in weight loss and Gas sensor Initial Difference (GID) and a decrease in Sum of Pixel Grayscale Values (SPGVs). This study underscores the potential of FPRIS to enhance precision and efficiency in coffee roasting. Future studies will expand on these findings by testing FPRIS across various food processes, potentially establishing a universal automation system for the food industry.