2023
DOI: 10.3390/app13031516
|View full text |Cite
|
Sign up to set email alerts
|

Detection of Periapical Lesions on Panoramic Radiographs Using Deep Learning

Abstract: Dentists could fail to notice periapical lesions (PLs) while examining panoramic radiographs. Accordingly, this study aimed to develop an artificial intelligence (AI) designed to address this problem. Materials and methods: a total of 18618 periapical root areas (PRA) on 713 panoramic radiographs were annotated and classified as having or not having PLs. An AI model consisting of two convolutional neural networks (CNNs), a detector and a classifier, was trained on the images. The detector localized PRAs using … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 9 publications
(4 citation statements)
references
References 29 publications
0
1
0
Order By: Relevance
“…Periapical radiographs are generally considered the gold standard imaging techniques for diagnosing apical lesions and provide a more detailed view of endodontic pathology than other extraoral radiographic imaging techniques [14]. The data set required for detecting fractured root canal instruments was collected from Karabük Oral and Dental Health Education and Research Hospital.…”
Section: Data Preparationmentioning
confidence: 99%
“…Periapical radiographs are generally considered the gold standard imaging techniques for diagnosing apical lesions and provide a more detailed view of endodontic pathology than other extraoral radiographic imaging techniques [14]. The data set required for detecting fractured root canal instruments was collected from Karabük Oral and Dental Health Education and Research Hospital.…”
Section: Data Preparationmentioning
confidence: 99%
“…4 YSA modelleri, kapsamlı miktarda veri içeren bir derin öğrenme süreci yoluyla, bir bilgisayarın kendi başına düşünmeyi öğrenme, karar verme ve sorunları çözme kapasitesiyle sunulmasını sağlayan bir tür YZ algoritmasıdır. 5 Görüntü segmentasyonu; düz radyografi, bilgisayarlı tomografi, manyetik rezonans ve ultrason görüntüleri dâhil olmak üzere çeşitli yöntemler kullanılarak elde edilen görüntülerdeki çeşitli anatomik yapıları veya lezyonları tanımlamak için kullanılmıştır. Diş hekimliğinde; diş segmentasyonu, yaş tahmini, üçüncü molar dişler ve mandibular alveolar sinir arasındaki ilişkinin tespiti, kistler ve maksiller sinüs gibi klinik durumlar için YZ algoritmalarının uygulandığı çeşitli çalışmalar bildirilmiştir.…”
unclassified
“…In general, digital workflow in dentistry enhances predictability and some of the clinical outcomes, such as dental prosthetic adaptation and trueness, with shorter total treatment times [1]. In this context, artificial intelligence (AI) algorithms have been used to further orient dentists regarding the diagnosis and prognosis of several types of clinical situations [4][5][6][7][8][9][10][11][12][13][14][15].…”
mentioning
confidence: 99%
“…Among the main clinical diagnostic applications of AI described in dental research are the detection of anatomical structures [2], caries [4], periapical lesions [5], periodontal bone loss [6], root fractures [7], odontogenic tumors [8], and even malignant diseases [9]. Furthermore, AI has been used to predict periodontal prognosis [10], need of orthodontic treatment [11], and debonding of resin composite crowns [12].…”
mentioning
confidence: 99%