2023
DOI: 10.3390/a16040209
|View full text |Cite
|
Sign up to set email alerts
|

Detection of Plausibility and Error Reasons in Finite Element Simulations with Deep Learning Networks

Abstract: The field of application of data-driven product development is diverse and ranges from requirements through the early phases to the detailed design of the product. The goal is to consistently analyze data to support and improve individual steps in the development process. In the context of this work, the focus is on the design and detailing phase, represented by the virtual testing of products through Finite Element (FE) simulations. However, due to the heterogeneous data of a simulation model, automatic use i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 47 publications
0
0
0
Order By: Relevance