Purpose
Ocular imaging devices provide quantitative structural information that might improve glaucoma progression detection. This study examined scanning laser polarimetry (SLP) population-derived versus individual-derived cut-off criteria for detecting progression.
Methods
Forty-eight healthy, glaucoma suspect and glaucoma subjects, providing 76 eyes were used. All subjects had reliable visual field (VF) and SLP scans acquired at the same visits from ≥ 4 visits. VF progression was defined by guided progression analysis (GPA) and by the VF index (VFI). SLP measurements were analyzed by fast mode (FM) GPA, compared to the population rate of progression, and extended mode (EM) GPA, compared to the individual variability. The agreement between progression detection methods was measured.
Results
Poor agreement was observed between progression defined by VF and FM and EM. The difference in TSNIT average rate of change between VF defined progressors and non-progressors for both FM (p=0.010) and EM (p=0.015) was statistically significant.
Conclusions
There is poor agreement between VF and SLP progression regardless of the use of population derived or individual variability criteria. The best SLP progression detection method could not be ascertained, therefore, acquiring three SLP scans per visit is recommended.