2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B) 2017
DOI: 10.1109/icee-b.2017.8192029
|View full text |Cite
|
Sign up to set email alerts
|

Detection of rotor faults based on Hilbert Transform and neural network for an induction machine

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
11
0
1

Year Published

2018
2018
2021
2021

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 11 publications
(12 citation statements)
references
References 12 publications
0
11
0
1
Order By: Relevance
“…Pontos adicionais das particularidades da aplicação do motor são tratados como dificuldades extras e intensificam a complexidade desta metodologia, uma vez que há necessidade de estar definida a velocidade de operação da máquina e estabelecida a frequência específica a se observar, além de necessidade de um processamento de alta resolução dos sinais para um diagnóstico mais preciso, como são afirmados em Saddam et al (2017) e Martin-Diaz et al (2017. Ainda, em Bellini et al (2008) fica evidenciado que este método funciona corretamente quando o MI está em estágio avançado de deterioração.…”
Section: Figura 1 Percentual De Falhas Em MI Por Origemunclassified
“…Pontos adicionais das particularidades da aplicação do motor são tratados como dificuldades extras e intensificam a complexidade desta metodologia, uma vez que há necessidade de estar definida a velocidade de operação da máquina e estabelecida a frequência específica a se observar, além de necessidade de um processamento de alta resolução dos sinais para um diagnóstico mais preciso, como são afirmados em Saddam et al (2017) e Martin-Diaz et al (2017. Ainda, em Bellini et al (2008) fica evidenciado que este método funciona corretamente quando o MI está em estágio avançado de deterioração.…”
Section: Figura 1 Percentual De Falhas Em MI Por Origemunclassified
“…Furthermore, regarding the traditional methodology of MCSA, according to the literature, for a more accurate fault diagnosis in rotating electrical machines, a high-resolution processing, as shown in Martin-Diaz et al (2017), and sensor speed monitoring are needed to determine the specific frequency of analysis (Saddam et al 2017). The authors in Gritli et al (2017) also point out that the current signal analysis used to detect faults works properly when the IM is extremely damaged.…”
Section: Introductionmentioning
confidence: 99%
“…Particularly, squirrel cage induction motors' (SCIMs) use is widespread in many processes, by virtue of their simple construction, low-cost manufacturing, reduced downtime and cheap maintenance (Karmakar et al, 2016;Thomson and Fenger, 2001;Benbouzid and Kliman, 2003). Despite the above-cited advantages, many faults may appear on an SCIM, which can be classified into mechanical faults (40-50 per cent of all faults), electrical faults as the stator faults (30-40 per cent), and the rotor cage faults which is the most rugged part of the SCIM (5-10 per cent of the reported faults) (Saddam et al, 2017;Puche-Panadero et al, 2009;Jaksch, 2003). For such reasons, the monitoring of SCIMs has become a permanent concern.…”
Section: Introductionmentioning
confidence: 99%
“…This method is based on the processing of signals obtained from the sensors of various physical quantities of the machine, such as stator lines currents, instantaneous power, rotational speed, axial flux and vibrational effects generated by machine faults (Karmakar et al, 2016;Cardoso et al, 1999;Lamim Filho et al, 2016). The obtained signals are analyzed using different diagnostic techniques, such as fast Fourier transform (FFT) method (Benbouzid and Kliman, 2003), shorttime Fourier transform (Benbouzid and Kliman, 2003), Hilbert Transform (HT) (Saddam et al, 2017;Jaksch, 2003;Puche-Panadero et al, 2009), Hilbert-Huang transform (Elbouchikhi et al, 2017) and Park's vector approach (PVA) (Perez-Cruz et al, 2017;Cardoso et al, 1999;Benbouzid and Kliman, 2003;Xu et al, 2013;Jaksch, 2003). MCSA has the advantage of being an independent internal flow system and does not need the machine to be turned off; therefore, the information carried by the signals will not be affected by the possible modeling error (Puche-Panadero et al, 2009).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation