Arc faults are one of the important causes of electric fires. In order to solve the problem of randomness, diversity, the concealment of series arc faults and to improve the detection accuracy, a novel arc fault detection method integrated random forest (RF), improved multi-scale permutation entropy (IMPE) and wavelet packet transform (WPT) are designed. Firstly, singular value decomposition (SVD) was applied to filter the current signal and then the high-dimensional fault features were constructed by extracting IMPE, the wavelet packet energy and the wavelet packet energy-entropy. Afterward, the high-dimensional fault features were employed to train the RF to realize the arc fault detection of different load types and the experimental results verify the effectiveness of the arc fault detection method designed in this paper. Finally, the comparative experiments demonstrates that the RF shows better performance in arc fault detection compared to the back-propagation neural network (BPNN) and least squares support vector machines (LSSVM), and that the experiments of transient events indicate that RF is able to effectively avoid incorrectly detecting different load types during the start operations and stop operations.