Background:
In-person interaction at school and offices offers invaluable experience to students and benefits to companies. In the midst of the pandemic, ways to safely go back to schools and offices have been argued. Centers for Disease Control and Prevention (CDC) recommends taking all precautions such as vaccination and universal indoor masking. However, even if all the precautions are implemented and transmission is perfectly prevented in the facilities, they may be infected outside of the facilities, which would be a source of transmission in the facilities. Therefore, identifying those infected outside of the facility through screening is essential to safely go back to schools or offices. However, studies investigating the effectiveness of screening are limited. Further, it is not well clarified now which screening strategy (e.g., low or high sensitivity antigen tests, intervals and the number of tests) effectively identify infected and infectious individuals to avoid transmission in facilities
Methods:
We assessed the effectiveness of various screening strategies in schools and offices through quantitative simulation. The effectiveness was assessed by the proportion of identified infected and infectious participants. Infection dynamics in the facility is governed by transmission dynamics of the population they belong to, and the screening is initiated at different epidemic phases: growth, peak, and declining phases. The viral load trajectory over time for each infected individual was modelled by the viral dynamics model, and the transmission process at the population level was modelled by a deterministic compartment model. The model parameters were estimated from clinical and epidemiological data. Screening strategies were varied by antigen tests with different sensitivity and schedules of screening over 10 days.
Results:
Under the daily screening, we found high sensitivity antigen tests (the detection limit: 63000 copies/mL) yielded 88% (95%CI 86-89) of effectiveness by the end of 10 days screening period, which is about 20% higher than that with low sensitivity antigen tests (2000000 copies/mL). Comparing screening scenarios with different schedules, we found early and frequent screening is the key to maximize the effectiveness. Sensitivity analysis revealed that less frequent tests might be an option when the number of antigen tests is limited especially when the screening is performed at the growth phase.
Discussion:
High sensitivity antigen tests, high frequency screening, and immediate initiation of screening are the key to safely restart educational and economic activities allowing in-person interactions. Our computational framework is useful in assessment of screening strategies by incorporating additional factors for specific situations.