We show how the measurement induced model of quantum computation proposed by Raussendorf and Briegel [Phys. Rev. Letts. 86, 5188 (2001)] can be adapted to a nonlinear optical interaction. This optical implementation requires a Kerr nonlinearity, a single photon source, a single photon detector and fast feed forward. Although nondeterministic optical quantum information proposals such as that suggested by KLM [Nature 409, 46 (2001)] do not require a Kerr nonlinearity they do require complex reconfigurable optical networks. The proposal in this paper has the benefit of a single static optical layout with fixed device parameters, where the algorithm is defined by the final measurement procedure.