Colloidal particles in a liquid medium are transported with constant velocity, and dynamic light scattering experiments are performed on the samples by self-mixing laser Doppler velocimetry. The power spectrum of the modulated wave induced by the motion of the colloidal particles cannot be described by the well-known formula for flowing Brownian motion systems, i.e., a combination of Doppler shift, diffusion, and translation. Rather, the power spectrum was found to be described by the q-Gaussian distribution function. The molecular mechanism resulting in this anomalous line shape of the power spectrum is attributed to the anomalous molecular dynamics of colloidal particles in transported dilute samples, which satisfy a nonlinear Langevin equation.