.[1] Continuing seismicity for about 30 years near a large western embayment of the Lake Nasser, about 50 km from the Aswan High Dam in Egypt, has led to a debate about the possibility of its relation with the reservoir impoundment. The largest event in the region occurred on 14 November 1981 (M 5.3), 20 km beneath the Wadi Kalabsha embayment, a westward extension of the Lake Aswan. Since then, continuous monitoring of seismic activity has given an excellent opportunity to study the spatiotemporal distribution of seismicity in the area. Most of the immediate aftershocks of the 1981 main shock were located in the Gebel Marawa area at depths between 15 and 30 km. Depths of almost all earthquakes away from this zone were shallower than 12 km. To quantify the effect of the reservoir impoundment on the seismicity of the Aswan area, we calculated changes in stress and pore pressure due to the reservoir impoundment using Green's function approach. The change in Coulomb stress (DS) is calculated on the fault planes responsible for majority of the seismicity of the region. We found that for all the seismogenic faults, DS is negative, i.e., stabilizing, when we consider the effect of the reservoir load only, whereas it is positive, i.e., destabilizing, when we include pore pressure. For example, at the hypocenter of the main earthquake, shear stress, normal stress, and pore pressure due to reservoir operation are estimated as 5.5, 13.2, and 13.5 kPa, respectively, which suggest that DS is À3.1 kPa when we do not consider the effect of pore pressure and 5.7 kPa when contribution from pore pressure is considered. Hence, the seismicity in the Aswan lake region is driven by the pore pressure due to reservoir impoundment.