2007
DOI: 10.3171/jns.2007.106.1.175
|View full text |Cite
|
Sign up to set email alerts
|

Detection of the subthalamic nucleus in microelectrographic recordings in Parkinson disease using the high-frequency (> 500 Hz) neuronal background

Abstract: Accurate and fast localization of the subthalamic nucleus (STN) during intraoperative electrophysiological monitoring can improve the outcome of deep brain stimulation surgery. The authors show a simple method of detecting the STN that is based on an analysis of the high-frequency (> 500 Hz) background (HFB) activity of neurons. The HFB reflects multiunit spiking activity close to the recording electrode, and its characteristic profile, which is higher in the STN than in neighboring structures, and facilitates… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
52
0
3

Year Published

2009
2009
2020
2020

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 57 publications
(56 citation statements)
references
References 19 publications
1
52
0
3
Order By: Relevance
“…Therefore, we choose the corresponding threshold TH 1 below the mean value for AD EEG and above the mean value for control EEG. With this choice of thresholds TH 1, TH 2 and TH 3 , the averaged features f 1 , f 2 , and f 3 are then mapped into music and visual display, where music notes and graphical objects are triggered by above-or below-threshold values of relative power respectively.…”
Section: Th1 Th2mentioning
confidence: 99%
See 1 more Smart Citation
“…Therefore, we choose the corresponding threshold TH 1 below the mean value for AD EEG and above the mean value for control EEG. With this choice of thresholds TH 1, TH 2 and TH 3 , the averaged features f 1 , f 2 , and f 3 are then mapped into music and visual display, where music notes and graphical objects are triggered by above-or below-threshold values of relative power respectively.…”
Section: Th1 Th2mentioning
confidence: 99%
“…This large number of neurons conduct electrical signals-action potentials-measured in microvolt which can be amplified and heard via speakers [2]. Neurophysiologists often listen and/or visualize neuronal electromagnetically-generated communications that are produced by individual neurons [3].…”
Section: Introductionmentioning
confidence: 99%
“…Another common approach is the time-frequency analysis, which consists in transforming the MER signals to different mathematical representation spaces. Examples include the Short-Time Fourier Transform space (STFT) for power spectrum analysis (Chuang et al 2012;Novak et al 2007), the Wavelet Transform space (WT) (Gemmar et al 2008), and the Hilbert-Huang Transform space (HHT) (Pinzon et al 2009). Within the wavelet space, analysis by adaptive filter banks or adaptive wavelets (AW) is one of the most powerful methods for feature extraction in MER signals (Giraldo et al 2008;Pinzon et al 2010).…”
Section: Introductionmentioning
confidence: 99%
“…Otro enfoque muy común es el análisis tiempo-frecuencia, en el cual las señales MER se transforman a distintos espacios, por ejemplo, el espacio de la transformada corta de Fourier (STFT) (Novak, Daniluk, Elias, & Nazzaro, 2007), el espacio wavelet (WT) (Gemmar, Gronz, Henrichsand, & Hertel, 2008) y también con métodos empíri-cos como la transformada Hilbert-Huang (HHT) (Pinzon, Garcés, Orozco, & Nazzaro, 2009). Estas metodologías entregan resultados aceptables de clasificación, sin embargo no ofrecen buena generalización al momento de validar un sistema de identificación automática.…”
Section: Introductionunclassified