2019
DOI: 10.24269/mtkind.v13i1.1691
|View full text |Cite
|
Sign up to set email alerts
|

Deteksi Dan Prediksi Trajektori Objek Bergerak Dengan Omni-Vision Menggunakan Pso-Nn Dan Interpolasi Polynomial

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 6 publications
0
2
0
1
Order By: Relevance
“…Sistem kontrol dapat bekerja secara otomatis dalam banyak cara [6]. Pada sistem prediksi dengan interpolasi polynomial akurasi prediksi didapatkan 20 % yang membutuhkan peningkatan sistem metode interpolasi agar akurasi meningkat [7]. Metodenya adalah dengan mengubah citra dari RGB ke skala abu-abu [8].…”
Section: Pendahuluanunclassified
“…Sistem kontrol dapat bekerja secara otomatis dalam banyak cara [6]. Pada sistem prediksi dengan interpolasi polynomial akurasi prediksi didapatkan 20 % yang membutuhkan peningkatan sistem metode interpolasi agar akurasi meningkat [7]. Metodenya adalah dengan mengubah citra dari RGB ke skala abu-abu [8].…”
Section: Pendahuluanunclassified
“…Permanent magnet DC motors (PMDCM) has been used in many application such as automotive, computer zapplication, robotic [1][2] [3][ [4], and industrial application [5][6] [7] [8][6] [9]. Its advantages over other conventional motors are better speed and torque characteristics, better dynamic response, high efficiency, no need for excitation current, no noise operation, high weight to torque ratio, and relatively low cost [10].…”
Section: Introductionmentioning
confidence: 99%
“…Recently, we can find so many works regarding time series analysis, using different kinds of approaches. Some were using the fuzzy time series approach [3][4][5][6][7], while some others were using hybrid approach [8][9][10][11][12], combining two or more methods to forecast the time series data. In this paper, we usea different approach, using backpropagation neural networks to forecast Jakarta Stock Exchange (JKSE) data.…”
Section: Introductionmentioning
confidence: 99%