2021
DOI: 10.22303/csrid.11.3.2019.140-148
|View full text |Cite
|
Sign up to set email alerts
|

Deteksi Emosi Media Sosial Menggunakan Term Frequency- Inverse Document Frequency

Abstract: <em>Pada saat ini, manusia cenderung mengekspresikan pendapat, dan emosi melalui media sosial. Keterbukaan ekspresi pada media sosial membuat batasan batasan pribadi seseorang menjadi lebur. Orang tidak lagi sungkan menulis kehidupan pribadinya melalui postingan status pembaharuan untuk dilihat oleh orang lain. Penulis mencoba menggunakan data dari media sosial agar dapat dilakukan analisis untuk mendapatan informasi kepribadian termasuk emosi. Sebelum dianalisis, data dilakukan pra pemrosesan membuang s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 9 publications
0
1
0
Order By: Relevance
“…The research [24] resulted in a less than maximum accuracy of 55.54% from 34,872 words for lexicon with EmoLex, while NLP produced only 61.53% accuracy. The Term Frequency-Inverse Document Frequency (TF-IDF) only produced 59% accuracy of 6 emotions, but if only one emotion produces a fairly good accuracy of 87.23% [23]. The Support Vector Machine (SVM) and K-Nearest Neighbor methods [1], where SVM produces 45.64% precision, 50.20% recall, and pretty good accuracy of 81.04%, while for KNN it produces less maximum precision, recall, and accuracy, that's 34.21% precision, 45.95% recall.…”
mentioning
confidence: 99%
“…The research [24] resulted in a less than maximum accuracy of 55.54% from 34,872 words for lexicon with EmoLex, while NLP produced only 61.53% accuracy. The Term Frequency-Inverse Document Frequency (TF-IDF) only produced 59% accuracy of 6 emotions, but if only one emotion produces a fairly good accuracy of 87.23% [23]. The Support Vector Machine (SVM) and K-Nearest Neighbor methods [1], where SVM produces 45.64% precision, 50.20% recall, and pretty good accuracy of 81.04%, while for KNN it produces less maximum precision, recall, and accuracy, that's 34.21% precision, 45.95% recall.…”
mentioning
confidence: 99%