2021
DOI: 10.46799/jsa.v2i10.327
|View full text |Cite
|
Sign up to set email alerts
|

Deteksi Hoax pada Berita Online Bahasa Inggris Menggunakan Bernoulli Naïve Bayes dengan Ekstraksi Fitur Tf-Idf

Abstract: Fenomena yang disebut sebagai "berita palsu" saat ini mengacu pada publikasi online dari pernyataan fakta palsu yang disengaja. Tujuan pembuatan berita hoax adalah untuk mempengaruhi pembaca berita untuk mencegah tindakan yang benar. Deteksi berita hoax ini berperan penting bagi pemerintah dan masyarakat, sebab itu berita hoax harus segera dideteksi untuk menghindari efek yang dapat ditimbulkannya. Penelitian ini bertujuan untuk mengetahui performa dari penggunaan algoritma Bernoulli Naïve Bayes dengan ekstrak… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
4
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(5 citation statements)
references
References 11 publications
0
4
0
1
Order By: Relevance
“…As a result, the accuracy of the two algorithms is below 68%, even the accuracy of the Naïve Bayes algorithm is only 66%. One effort to improve the performance of machine learning models to detect hoaxes is to use the TF-IDF feature extraction [6], [11]. In the research [11], the use of TF-IDF feature extraction in the Bernoulli Naive Bayes algorithm can increase accuracy by 16.08%, precision 15.7%, recall 16.22%, and f1-score 15.92% when compared to the results of previous studies.…”
Section: Introductionmentioning
confidence: 92%
See 1 more Smart Citation
“…As a result, the accuracy of the two algorithms is below 68%, even the accuracy of the Naïve Bayes algorithm is only 66%. One effort to improve the performance of machine learning models to detect hoaxes is to use the TF-IDF feature extraction [6], [11]. In the research [11], the use of TF-IDF feature extraction in the Bernoulli Naive Bayes algorithm can increase accuracy by 16.08%, precision 15.7%, recall 16.22%, and f1-score 15.92% when compared to the results of previous studies.…”
Section: Introductionmentioning
confidence: 92%
“…One effort to improve the performance of machine learning models to detect hoaxes is to use the TF-IDF feature extraction [6], [11]. In the research [11], the use of TF-IDF feature extraction in the Bernoulli Naive Bayes algorithm can increase accuracy by 16.08%, precision 15.7%, recall 16.22%, and f1-score 15.92% when compared to the results of previous studies. Based on the short review above and literature [12], Naïve bayes algorithm is one of the most popular machine learning algorithms for detecting hoaxes.…”
Section: Introductionmentioning
confidence: 92%
“…Kemudian pada [10] mengenai deteksi berita hoax dengan ekstraksi fitur TF-IDF menggunakan algoritma Bernoulli Naïve Bayes. Dataset terdiri dari 4 atribut yaitu title, text, subject, dan date dengan pelabelan menggunakan nilai biner 1 untuk fake news dan 0 untuk real news.…”
Section: Tinjauan Pustakaunclassified
“…or is fake news so that it can provide an explanation to readers of the news (Granik & Mesyura, 2017). The detection of hoax news consistently increases from year to year, which means that efforts to stem the circulation of hoax news never end and continue to be implemented (Prayoga et al, 2021a).…”
Section: Introductionmentioning
confidence: 99%
“…Scientists explain that classifying a dataset is using a machine learning method which is an effective method for classifying data in the form of hoax news (Prayoga et al, 2021b). One of the machine learning algorithms is the C5.0 algorithm which is a development algorithm from the C4.5 algorithm where the process is almost similar, but the C5.0 algorithm has more value than the C4.5 algorithm.…”
Section: Introductionmentioning
confidence: 99%