One of the problems for quantifying the amount of silicon available by molecular absorption is the elimination of chemical interference caused by available phosphorus. The aim of this work was to evaluate different organic acids in eliminating the interference caused by phosphorus in the quantification of available silicon by molecular absorption. The experiments were conducted in the Soil laboratory of the College of Agricultural Sciences at the Universidad de Córdoba, Colombia. For this work, different acids such as tartaric, citric, oxalic and malic were evaluated at two concentrations (0.8 and 1.33 mol L-1). Solutions containing silicon (1 mg L-1) and six concentrations of phosphorus were prepared (0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 mg L-1). The quantification of silicon was conducted by molecular absorption spectrophotometry using a Perkin Elmer Lambda XLS + at 660 nm. The results were subjected to the LSD tests and contrasts using the R software (Development Core Team, version 3.2.2).The results indicated that the oxalic, citric and malic acids at both concentrations produced lower overestimation of silicon in the presence of the P concentrations 0.6, 0.8 and 1.0 mgL-1 than the tartaric acid, which is commonly used as a reference to remove the P interference.