RESUMO:Os modelos estatísticos são fundamentais para a estimativa dos volumes das árvores e consequentemente para o planejamento das empresas florestais. O objetivo do estudo foi testar e selecionar modelos estatísticos para a estimativa do volume individual de árvores da espécie fava barriguda (Parkia gigantocarpa Ducke) em plantios no estado do Mato Grosso. Foram utilizadas 30 árvores de um plantio experimental. As árvores tiveram seus volumes rigorosos determinados pelo método de Smalian. Foram testados oito modelos lineares, sendo dois obtidos pelo processo stepwise -forward. Para avaliar a precisão dos modelos foram utilizados o coeficiente de determinação ajustado (R 2 aj ), o erro-padrão da estimativa (Syx %), valor de F, valor ponderado dos escores estatísticos (VP) e análise gráfica dos resíduos. Para a estimativa do volume total, os melhores modelos apresentaram R 2 aj acima de 0,92 e erros-padrão abaixo de 12%, ao passo que para o volume comercial, esses valores foram de 0,62 e 26% respectivamente. Os modelos obtidos por meio do procedimento Stepwise geraram as estimativas mais precisas.Palavras-chave: alometria, ajuste de equações, volumetria, Amazônia.
Statistical models for estimating volume of trees of Parkia gigantocarpa Ducke in plantations in Mato Grosso State, BrazilABSTRACT: Statistical models are essential for the estimate of volumes of trees and therefore for the planning of forestry companies. The aim of this study was to test and select statistical models for estimating the individual volume of trees of fava barriguda species (Parkia gigantocarpa Ducke) in plantations in Mato Grosso State, Brazil. Thirty trees originated from an experimental plantation were used. Trees had their rigorous volumes determined by Smalian method. Eight linear models were tested, where two were obtained by stepwise-forward process. In order to assess the accuracy of the models, adjusted coefficient of determination (R 2 aj.), standard error of estimate (Syx %), F value, weighted value of statistical scores (WV) and graphical analysis of waste were used. Regarding the estimate of the total volume, the best models showed R 2 aj above 0.92 and standard errors below 12%, whilst these values were 0.62 and 26%, respectively, with regard to the commercial volume. The models obtained by the Stepwise procedure have generated more accurate estimates.