While the original equipment manufacturers are developing engines that can withstand higher PCP, the methodology to maximize the thermal efficiency gain with different PCP limits is still not well-known or documented in the literature. This study aims to provide guidance on how to co-optimize air system parameters, compression ratio, and intake valve closing (IVC) timing of heavy-duty turbocharged diesel engines to enhance thermal efficiency with peak cylinder pressure (PCP) constraints. In this study, a one-dimensional turbocharged engine model is established and validated by experimental data. The effects of turbocharger efficiency, boost pressure, high-pressure exhaust gas recirculation (HP EGR) ratio, compression ratio (CR), and IVC timing on diesel engine efficiency are assessed under PCP constraints through parametric analysis. The results indicate that for enhancing engine thermal efficiency under limited PCP, an increment in boost pressure and CR, and late IVC timing compared to baseline is required. By multiple parameter optimization, the best parameter combination under different PCP constraints is proposed. At a PCP limit of 20 MPa, the combination of a compression ratio of 18.57, boost pressure of 298 kPa, and IVC timing of −95.2 °CA ATDC yields a 1.56% (absolute value) improvement in ITEn over the baseline condition. Raising the PCP limits from 20 MPa to 25 MPa requires increasing the compression ratio to 21.92, boost pressure to 308 kPa, and delaying the intake valve closing timing to −88.7 °CA ATDC, which results in an absolute improvement of 0.86% in ITEn. Baseline engine configuration is updated accordingly to validate the thermal efficiency improvement strategy at a 25 MPa PCP limitation. Experimental results demonstrate a 2.2% (absolute value) improvement in brake thermal efficiency and 1.98% (absolute value) improvement in overall energy efficiency.