Benzo[a]pyrene (BaP), a five-ring polycyclic aromatic hydrocarbon, is a well-recognized environmental pollutant. Coal-processing waste products, petroleum sludge, asphalt, creosote, and tobacco smoke, all contain high levels of BaP. Exposure to BaP elicits many adverse biological effects, including tumor formation, immunosuppression, teratogenicity, and hormonal effects. In addition to the genetic damage caused by BaP exposure, several studies have indicated the disruption of protein-protein signaling pathways. However, contrary to the large number of studies on BaP-induced DNA damage, only few data have been gathered on its effects at the protein level. This review highlights all proteomic studies to date used for assessing the toxicity of BaP and its metabolites in various organ systems. It will also give an overview on the role proteomics may play to elucidate the mechanisms underlying BaP toxicity.