Determination of polar 1H-benzotriazoles and benzothiazoles in water by solid-phase extraction and liquid chromatography LTQ FT Orbitrap mass spectrometry van Leerdam, J.A.; Hogenboom, A.C.; van der Kooi, M.M.E.; de Voogt, W.P.
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Download date: 22 Jun 2019This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.
a b s t r a c tA sensitive, reliable and robust method for the trace determination of six polar 1H-benzotriazoles and four benzothiazoles in drinking and surface water was developed. These compounds were extracted from water by solid-phase extraction and analyzed by Liquid Chromatography-Electrospray Mass Spectrometry using a linear ion trap-Orbitrap hybrid instrument at high resolution of 30,000 FWHM in the full-scan acquisition mode. At least one product ion was simultaneously detected in the linear ion trap at low mass resolution and was used for confirmation of compound identity. The compounds studied are soluble in water, resistant to biodegradation, only partially removed in wastewater treatment and they may pass the water treatment processes in the production of drinking water.The analytes and four internal standards were preconcentrated by solid-phase extraction at low pH. Positive electrospray ionization resulted in protonated molecular ions for all the 1H-benzotriazoles and benzothiazoles.The mass accuracy was between −5 ppm at m/z 120 and −0.1 ppm at m/z 182 and did not change for more than 2 ppm over a sample sequence of 8 days of analysis time. The optimized method allowed quantifying six benzotriazoles and four benzothiazoles in samples of drinking and surface water down to method detection limits of 0.01 g/L. The recoveries ranged between 45 and 125% in ultrapure, drinking and surface water at a spiking level of 0.2 g/L; the repeatability was between 2 and 13%. All analytes showed a linear response between 0.01 and 1.0 g/L. No significant matrix effect w...