Research and industry are calling for additively manufactured multi-materials, as these are expected to create more efficient components, but there is a lack of information on corrosion resistance, especially since there is a risk of bimetallic corrosion with two metallic components. In this study, the corrosion behaviour of a multi-material made of 316L and CuSn10 is investigated before and after a stress relief annealing using linear sweep voltammetry. For this purpose, a compromise had to be found in the heat treatment parameters in order to be able to treat both materials together. In addition, additively manufactured and rolled samples were investigated and used as a reference. Interaction of the two materials in the multi-material could be demonstrated, but further investigations are necessary to clearly assess the behaviour. In particular, the transition region of the two materials should be investigated. In this study, a stress relief heat treatment at 400 °C caused a slight improvement in the corrosion resistance and reduced the scatter of the measurements significantly. No significant difference was measured between the additively produced and rolled samples.