We consider unsteady undular bores for a pair of coupled equations of Boussinesqtype which contain the familiar fully nonlinear dissipationless shallow-water dynamics and the leading-order fully nonlinear dispersive terms. This system contains one horizontal space dimension and time and can be systematically derived from the full Euler equations for irrotational flows with a free surface using a standard long-wave asymptotic expansion. In this context the system was first derived by Su and Gardner. It coincides with the one-dimensional flat-bottom reduction of the Green-Naghdi 1 system and, additionally, has recently found a number of fluid dynamics applications other than the present context of shallow-water gravity waves. We then use the Whitham modulation theory for a one-phase periodic travelling wave to obtain an asymptotic analytical description of an undular bore in the Su-Gardner system for a full range of "depth" ratios across the bore. The positions of the leading and trailing edges of the undular bore and the amplitude of the leading solitary wave of the bore are found as functions of this "depth ratio". The formation of a partial undular bore with a rapidly-varying finite-amplitude trailing wave front is predicted for "depth ratios" across the bore exceeding 1.43. The analytical results from the modulation theory are shown to be in excellent agreement with full numerical solutions for the development of an undular bore in the Su-Gardner system.
I INTRODUCTIONIn shallow water, the transition between two different basic states, each characterized by a constant depth and horizontal velocity, is usually referred to as a bore. For sufficiently large transitions, the front of the bore is often turbulent, but as noted in the classical work of Benjamin and Lighthill [1], transitions of moderate amplitude are accompanied by wave trains without any wave breaking, and are hence called undular bores. Well-known examples are the bores on the River Severn in England and the River Dordogne in France.Undular bores also arise in other fluid flow contexts; for instance they can occur as internal undular bores in the density-stratified waters of the coastal ocean (see, for instance, [2], [3]), and as striking wave-forms with associated cloud formation in the atmospheric boundary layer (see, for instance, [4], [5]). They can also arise in many other physical contexts, and in plasma physics for instance, are usually called collisionless shocks.The classical theory of shallow-water undular bores was initiated by Benjamin and Lighthill in [1]. It is based on the analysis of stationary solutions of the Kortewegde Vries (KdV) equation modified by a small viscous term [6]. Subsequent approaches to the same problem have been usually based on the Whitham modulation theory (see 2 [7], [8]), appropriately modified by dissipation; this allows one to study analytically the development of an undular bore to a steady state (see [9], [10], [11]). Most recently, this approach was used in [12] to study the development of an u...