Objective: Buspirone, is a medication primarily used for generalized anxiety disorder (GAD), relieve symptoms of anxiety and unipolar depression. This drug exhibit low bioavailability (approximately 5%) due to extensive first-pass metabolism and non-targeted delivery results in numerous side effects. It is taken by mouth, and it may take up to four weeks to have an effect. The present investigation aimed at the development of buspirone in situ nanoemulsion gel to evaluate its potential for efficacious nose to brain drug delivery.
Methods: Buspirone-loaded nanoemulsions (BNEs) were prepared by aqueous titration (Spontaneous emulsification) method using Oleic acid, Tween 80, and PEG 400 as oil, surfactant and cosurfactant respectively. The NEs (FC1-FC8) were characterized for pharmaceutical characteristics (Appearance, thermodynamic stability, polydispersity index (PDI) value, globule size, pH, Viscosity, Conductivity and Refractive index). In vitro drug release study from nanoemulsions (NEs) was carried out using Keshary–Chien cell (KC cell, 25 ml) in phosphate buffer pH 5.5.
Results: Formulation FC5 with mean globule size of 105.4±1.10 nm, PDI value 0.230±0.01 and drug release 90±0.39% in 6 h (h) was developed as mucoadhesive nanoemulsion gel formulation with 17.5 % W/W of Pluronic F127. The nanoemulsion gel was homogenous, transparent, and possessed a bioadhesive strength of 1605 Dyne/cm2. In vitro cumulative drug release was found to be 90.00±0.39 % at the end of 6 h.
Conclusion: The gel had no effect on the structural integrity of nasal mucosa. Hence, the study postulates that In situ nanoemulsion gel of buspirone could be used as an intranasal formulation for targeted brain delivery via nasal route.