This review is focused on the capillary electrophoresis-mass spectrometric (CE-MS) analysis of nucleic acid constituents in the broadest sense, going from nucleotides and adducted nucleotides over nucleoside analogues to oligonucleotides. These nucleic acid constituents play an important role in a variety of biochemical processes. Hence, their isolation, identification, and quantification will undoubtedly help reveal the process of life and disease mechanisms, such as carcinogenesis, and can also be useful for antitumor and antiviral drug research to provide valuable information about mechanism of action, pharmacokinetics, pharmacodynamics, toxicity, therapeutic drug level monitoring, and quality control related to this substance class. Fundamental investigations into their structure, the search for modifications, the occurrence and biochemical impact of structural variation amongst others, are therefore of great value. In view of the related bioanalytical procedures, the coupling of CE to MS has emerged as a powerful tool for the analysis of the complex mixtures of nucleic acid constituents: CE confers rapid analysis and efficient resolution, while MS provides high selectivity and sensitivity with structural characterization of minute amounts of compound. After an introduction about the biochemical and analytical perspectives on the nucleic acid constituents, the different modes of CE used in this field of research as well as the relevant CE-MS interfaces and the difficulties associated with quantitative CE-MS are briefly discussed. A large section is finally devoted to field-oriented applications.