Glutathione (GSH) is the most abundant nonprotein thiol in eukaryotic cells and it protects cells by functioning as an antioxidant and a metal-binding ligand. Because glutathione readily undergoes oxidation-reduction reactions to combat oxidative stress, intracellular ratios of the reduced (GSH) to the oxidized (GSSG) forms of glutathione may serve as an important biomarker of exposure and effect of trace metals in eukaryotic cells. We compared sensitivity of glutathione ratios in the freshwater alga Chlamydomonas reinhardtii to the traditional endpoints of cell growth rates and chlorophyll a following exposure to Cu for periods of 6 and 24 h. A response of the GSH:GSSG ratio to Cu concentration was observed at Cu levels of 40 and 80 nM after exposure for both 6 and 24 h. The concentration of total GSH at 24 h was roughly half the value at 6 h after exposure to either 40 or 80 nM Cu. A response for cell growth rate was observed only at 24 h, whereby the average specific growth rate decreased from about 1.1 to 0.4 d(-1). The total Cu concentrations eliciting a cell response of 50%, effect concentrations (EC50s), after 24 h of exposure were similar (49.2, 49.8, and 38.2 nM Cu) and not significantly different for GSH:GSSG ratio, GSH levels, and specific growth, respectively. Total cell-associated Cu concentrations after exposure for 24 h were calculated from the EC50 endpoints and ranged from 13.3 to 17.0 fg/cell. Overall, thiol ratios were indicative of toxicity resulting from exposure to Cu, but precision may be greater for the cell growth rate endpoints.