Electromagnetic interferences (EMI) can cause different kinds of problems in digital and analog systems, leading to malfunctions, system reboots, or even permanent damage to the system if this is not adequately designed or protected. Nowadays, most electronic products are connected to the main power network or are designed to be interconnected with others through cables. These cable interconnections are becoming more difficult due to the rigid restrictions related to the accomplishment of electromagnetic compatibility (EMC) compliance. When the cables of a system represent an EMI source, it cannot pass the conducted or radiated emissions test. A widely used technique to reduce these problems is applying an EMI suppressor such as a sleeve core. This EMI suppressor provides selective attenuation of undesired interference components that the designer may wish to suppress, and it does not significantly affect the intended signal. This contribution focuses on analyzing different nanocrystalline (NC) EMI suppressors’ performance intended for attenuating interferences in cables. Some NC novel samples are characterized and compare to MnZn and NiZn cores to determine this novel material’s effectiveness compared to the conventional ceramic solutions by analyzing samples with different dimensions.