Abstract:Single plane illumination microscopy based fluorescence correlation spectroscopy (SPIM-FCS) is a new method for imaging FCS in 3D samples, providing diffusion coefficients, transport, flow velocities and concentrations in an imaging mode. SPIM-FCS records correlation functions over a whole plane in a sample, which requires array detectors for recording the fluorescence signal. Several types of image sensors are suitable for FCS. They differ in properties such as effective area per pixel, quantum efficiency, noise level and read-out speed. Here we compare the performance of several low light array detectors based on three different technologies: (1) Single-photon avalanche diode (SPAD) arrays, (2) passive-pixel electron multiplying charge coupled device (EMCCD) and (3) active-pixel scientific-grade complementary metal oxide semiconductor cameras (sCMOS). We discuss the influence of the detector characteristics on the effective FCS observation volume, and demonstrate that light sheet based SPIM-FCS provides absolute diffusion coefficients. This is verified by parallel measurements with confocal FCS, single particle tracking (SPT), and the determination of concentration gradients in space and time. While EMCCD cameras have a temporal resolution in the millisecond range, sCMOS cameras and SPAD arrays can extend the time resolution of SPIM-FCS down to 10 μs or lower.
References and links1. K. M. Berland, P. T. So, and E. Gratton, "Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment," Biophy. J. 68, 694-701 (1995). 2. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one-and two-photon excitation," Biophy. J. 77, 2251-2265 (1999). 3. R. Brock, G. Vàmosi, G. Vereb, and T. M. Jovin, "Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy," Proc. Natl. Acad. Sci. U.S.A. 96, 10123-10128 (1999 0-1 (2010). 53. Z. Petrásek, P. Schwille, and Z. Petrášek, "Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy," Biophy.