c Consideration of existing compounds always simplifies and shortens the long and difficult process of discovering new drugs specifically for diseases of developing countries, an approach that may add to the significant potential cost savings. This study focused on improving the biological characteristics of the already-existing antischistosomal praziquantel (PZQ) by incorporating it into montmorillonite (MMT) clay as a delivery carrier to overcome its known bioavailability drawbacks. The oral bioavailability of a PZQ-MMT clay nanoformulation and its in vivo efficacy against Schistosoma mansoni were investigated. The PZQ-MMT clay nanoformulation provided a preparation with a controlled release rate, a decrease in crystallinity, and an appreciable reduction in particle size. Uninfected and infected mice treated with PZQ-MMT clay showed 3.61-and 1.96-fold and 2.16-and 1.94-fold increases, respectively, in area under the concentration-time curve from 0 to 8 h (AUC 0 -8 ) and maximum concentration of drug in serum (C max ), with a decrease in elimination rate constant (k el ) by 2.84-and 1.35-fold and increases in the absorption rate constant (k a ) and half-life (t 1/2e ) by 2.11-and 1.51-fold and 2.86-and 1.34-fold, respectively, versus the corresponding conventional PZQ-treated groups. This improved bioavailability has been expressed in higher efficacy of the drug, where the dose necessary to kill 50% of the worms was reduced by >3-fold (PZQ 50% effective dose [ED 50 ] was 20.25 mg/kg of body weight for PZQ-MMT clay compared to 74.07 mg/kg for conventional PZQ), with significant reduction in total tissue egg load and increase in total immature, mature, and dead eggs in most of the drug-treated groups. This formulation showed better bioavailability, enhanced antischistosomal efficacy, and a safer profile despite the longer period of residence in the systemic circulation. Although the conventional drug's toxicity was not examined, animal mortality rates were not different between groups receiving the test PZQ-clay nanoformulation and conventional PZQ.
Schistosomiasis is a parasitic disease caused by blood flukes of the genus Schistosoma and is a serious public health problem in almost 70 countries of the tropics and subtropics without potable water and with poor sanitary conditions. It is estimated that at least 230 million people need treatment against schistosomiasis per year (1). Since an effective vaccine against schistosomiasis is lacking, the emphasis today is placed on the drug praziquantel (PZQ) (2). The low cost has made presumptive treatment on the basis of early clinical symptoms, or even universal treatment, costeffective in many situations (3).Although PZQ has proved to be especially useful in the treatment of schistosomiasis, it sometimes fails to give complete cures in treated populations. The failure of mass treatment to control schistosomiasis has been attributed to the fact that therapy is not sufficiently long-lasting (4). This effect can occur because of the low bioavailability of praziquantel d...