Poisson's ratio of an isotropic and free elastic plate is estimated from the polarization of the first symmetric acoustic zero-group velocity Lamb mode. This polarization is interpreted as the ratio of the absolute amplitudes of the surface normal and surface in-plane components of the acoustic mode. Results from the evaluation of simulated datasets indicate that the presented relation, which links the polarization and Poisson's ratio, can be extended to incorporate plates with material damping. Furthermore, the proposed application of the polarization is demonstrated in a practical field case, where an increased accuracy of estimated nominal thickness is obtained.