In this article, new applications and perspectives of one-and two-dimensional NMR spectroscopy for study of chiral organic compounds in the non-isotropic phases (solid state and liquid crystals) are presented. The review is organized into five sections. In the first part, theoretical background and short introduction to solid state NMR are shown. The second part presents how NMR isotropic chemical shift can be used for distinguishing of racemates and enantiomers. In the third section, the power of the ODESSA pulse sequence for investigation of racemates, enantiomers and establishing of enantiomeric excess are discussed. The fourth part shows the application of analysis of principal elements of chemical shift tensors obtained by means of 2D NMR techniques for searching of absolute configuration and conformational changes in the solid state. The final part presents recent achievements of chiral liquid crystals NMR methodology for study of chiral compounds.