Introduction. There was substantiated a method for the determination of formaldehyde by vapor-phase gas chromatography by the use of derivatizing reagent o-(2,3,4,5,6-pentafluorbenzyl)hydroxylamine. Material and methods. Formaldehyde in urine was derivatized to o-pentafluorobenzyloxime and recovered to the vapor phase by heating the urine sample with o-(2,3,4,5,6-pentafluorbenzyl)hydroxylamine in a sealed vial. Gas-chromatographic analysis of the vapor-air phase was performed in a mode of the temperature gradient on a capillary column HP-5 with a flame ionization detector. Identification of the analyte in the form of the derivative-o- pentafluorobenzyloxime of formaldehyde was carried out according to the absolute retention time, which was established by comparing the chromatograms of model formaldehyde mixtures in the urine of different concentrations. Results. The optimal conditions for gas extraction are selected using mathematical experimental planning. The most important factors of gas extraction in the vapor-phase analysis are the temperature and time of the establishment of the interphase equilibrium with heating. From the experimentally obtained curves of the analytical signal on the temperature and the heating time, the zero level and the interval of variation of these factors are chosen. A matrix for planning a 2-factor experiment was constructed. The coefficients of the mathematical model are determined. There was carried out statistical processing of the experimental data, which was reduced to the estimation of the reproducibility of the optimization parameter and to the evaluation of the significance of the coefficient of the mathematical model. The adequacy of the mathematical model was evaluated, its interpretation was carried out. Discussion. The peak area of the analyte increases with the elevating the temperature and heating time, due to an increase in the analyte concentration in the vapor phase. Moreover, the heating time makes a greater contribution to the formation of the analytical signal than the temperature. The step of motion along the gradient was calculated and the experiments of steep ascent were carried out. Conclusion. According to the results of the steep ascent experiments, the optimal conditions for the gas extraction of formaldehyde in the form of a derivative were chosen.