ÖZETBu çalışmada Al/SiC kompozit malzemenin yüzey pürüzlülüğü kesme parametrelerine bağlı olarak yapay sinir ağları yaklaşımı kullanılarak yüksek doğrulukta tahmin edilmiştir. Al/SiC kompozit malzemenin TiCN+TiN kaplamalı cementide carbide kesici takımla işlenmesi sonucu deneysel olarak elde edilen yüzey pürüzlülüğü değerleri ileri beslemeli geriye yayılımlı 9 farklı YSA modelde eğitilmiştir. YSA modellerinin ağ yapılarındaki nöron sayıları: 3-5-6-1, 3-6-4-1, 3-6-6-1, 3-4-3-5-1, 3-4-5-3-1, 3-6-2-3-1, 3-7-1, 3-8-1 ve 3-9-1'dir. YSA'nın eğitimi ve testi sonrası elde edilen değerler YSA modellerde yaygın olarak kullanılan istatistiksel analizlere tabi tutularak incelenmiştir. Deneysel çalışmaların zorluğu, analitik ifadelerin karmaşıklığı bir çok çalışmada olduğu gibi, YSA kullanımının avantajı kullanılarak kesme parametrelerine bağlı olarak yüzey pürüzlülüğünün tahmini bu çalışmada da YSA'nın kullanılabilirliğini göstermiştir.Anahtar kelimeler: Yüzey pürüzlülüğü, yapay sinir ağları, kompozit malzeme
PREDICTION OF SURFACE ROUGHNESS OF Al/SiC COMPOSITE MATERIAL WITH ARTIFICIAL NEURAL NETWORKS ABSTRACTIn this study, surface roughness of Al/SiC composite material depending on the cutting parameters were predicted with high accuracy using approach of artifical neural network. Surface roughness values obtained as experimentally result of machining with TiCN+TiN coated cementide carbide cutting element of Al/SiC composite material are trained in nine different ANN models with feed forward back propogation. The numbers of neuron in network structure of ANN models are 3-5-6-1, 3-6-4-1, 3-6-6-1, 3-4-3-5-1, 3-4-5-3-1, 3-6-2-3-1, 3-7-1, 3-8-1 ve 3-9-1. The values obtained from the ANN training and testing were evaluated by applying the statistical analyses that are widely used in ANN models. In the face of diffuculty of experimental studies and complexity of the analitical expression, as with many studies, this study also showed that ANN is a usable method for predicting the surface roughness value depending on cutting parameters.