Silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) is a critical insect for silk producers, but the inappropriate application of insecticides negatively affects the physiology and behavior of silkworms. This study found that the effects of neonicotinoid insecticides applied using two spraying methods on the growth and development of silkworms were different: the median lethal concentration (LC50) values of two pesticides applied using the leaf-dipping method were 0.33 and 0.83 mg L−1 and those of two pesticides applied using the quantitative spraying method were 0.91 and 1.23 mg kg−1. The concentration of pesticides on the mulberry leaves did not decrease after their application using the quantitative spraying method, and a uniform spraying density was observed after the mulberry leaves were air-dried (no liquid) under realistic conditions. We then treated silkworms with the quantitative spraying method and leaf-dipping method. The treatment of silkworm larvae with imidacloprid and thiamethoxam at sublethal concentrations significantly prolonged the development time and significantly decreased the weight and pupation rate, as well as economic indicators of enamel layers and sputum production. Thiamethoxam treatment significantly increased the activities of carboxylesterase (CarE) and glutathione-S-transferase (GST). The activity of CarE and GST increased, decreased, and then increased, and the highest activity was detected on the 10th and 12th days. Thiamethoxam exposure significantly elevated the transcription levels of CarE-11, GSTe3 and GSTz2 and induced DNA damage in hemocytes. This study confirmed that the quantitative spray method is more stable than the leaf-dipping method. Moreover, imidacloprid and thiamethoxam treatment affected the economy and indexes of silkworms and induced changes in detoxification enzymes and DNA damage in silkworms. These results provide a basis for understanding the mechanism of the sublethal effects of insecticides on silkworms.