The isotope ratios of ethanol, an important constituent or ingredient of some foods and various beverages and fuels, provide information about biological and geographical origin and quality. We have developed an improved method for measuring the isotope ratio of ethanol in various samples by gas chromatography-high temperature conversion or combustion-isotope ratio mass spectrometry (GC-TC/C-IRMS) with headspace solid-phase microextraction (HS-SPME). A HS-SPME method was developed by optimizing several different parameters, including salt addition, incubation temperature and time, and extraction time. The HS-SPME method enabled us to determine the isotope ratio at low ethanol concentrations (0.08 mM) in 50 min with good precision (+/-0.3 per thousand for delta(13)C and +/-5 per thousand for deltaD). An advantage of this technique is that it can be adapted for use with samples which have high viscosity and contain many matrix compounds, such as alcoholic and non-alcoholic beverages.