A short comparison campaign took place at the Racibórz measurement site in May 2024 to assess the consistency of the Integrated Aerosol Monitoring Unit (IAMU), which houses three PM aerosol sensors (SPS30, OPC-N3, and OPS 3330) within a single enclosure. This assessment was supported by simultaneous measurements from two reference instruments (APS 3321 and SMP S3082), along with auxiliary observations from a ceilometer and meteorological station. To enhance particle transmission efficiency to the IAMU sensors, aerodynamic modeling of the inlet pipes was performed, accounting for particle density and diameter. The primary objective of this study was to evaluate the feasibility of using the IAMU, in conjunction with optimized inlet designs, for PM monitoring under varying ambient relative humidity and sensor temperature conditions. IAMU measurements have shown large absolute differences in PM values (exceeding one order of magnitude) with moderate (>0.54 for PM10) to high (>0.82 for PM2.5 and PM1) temporal correlations. A calibration method was proposed, using reference instrument data and incorporating sensor temperature and air sample humidity information. The IAMU, combined with the developed calibration methodology, enabled the estimation of the aerosol growth factor, deliquescence point (RH ≈ 65%), and PM1 hygroscopic parameter κ (0.27–0.56) for an industrial region in Poland.