“…The field has, however, become more transparent as many have started to directly compare different methods on the same datasets, in an effort to offset the lack of public detection and segmentation datasets [17,36,34]. Recently, the field has also started investigating other parts of the sewer inspection process [30,32,17,[37][38][39][40][41], such as Haurum et al [37] proposing a multi-task classification approach for simultaneously classifying defects, water level, pipe material, and pipe shape, and Wang et al [30] proposed a framework to accurately determine the severity of defects related to the operation and maintenance of the pipes. The field has also adopted recent trends from the general computer vision field such as selfsupervised learning [39], synthetic data generation [25,24,[42][43][44], neural architecture search [45], and usage of the Transformer architecture [17,46], indicating that the automated sewer inspection field is catching up to the general computer vision domain.…”