Desde sua implementação na década de 80, a eletroforese capilar vem evoluindo, tornando-se uma técnica de separação bem estabelecida e, hoje, engloba de fato, uma família de técnicas eletrocinéticas, com mecanismos de separação distintos e seletividade característica, todas passíveis de serem conduzidas em uma única coluna capilar. Neste trabalho, a versatilidade da eletroforese capilar para lidar com materiais de diferentes classes químicas e matrizes complexas é ilustrada, apresentando aplicações representativas nas áreas clínica, forense, cosmética, ambiental, nutricional e farmacêutica, compilando os interesses de pesquisa e resultados do nosso próprio grupo.Since its inception in the 80's, capillary electrophoresis has matured into a well-established separation technique, actually encompassing a family of electrodriven techniques with distinct separation mechanisms and selectivity, performed in a single capillary column. In this work, the versatility of capillary electrophoresis in handling materials from a diversity of chemical classes and complex sample matrices is illustrated by representative applications in the clinical, forensic, cosmetological, environmental, nutritional and pharmaceutical areas, grouping together our own research interests and results.Keywords: capillary electrophoresis, ions, hemoglobin, morphine, aldehydes, pesticides, plant secondary metabolites, protein hydrolysate, AIDS drug cocktail
IntroductionElectrophoresis is the separation of charged molecules based on differential migration in an electric field. Historically, it was introduced in the early 1930´s with the moving-boundary method of Tiselius, for the separation of human serum into some of its constituent proteins. For this pioneering work, Tiselius was awarded a Nobel prize in 1948. Since then, electrophoresis has held a unique position among the techniques for separation of biomolecules. But only in the last two decades, with the implementation of the capillary techniques, has electrophoresis evolved from a manually intensive to a fully automated format and gained acceptance in the analytical métier. 1 At the present time, capillary electrophoresis (CE) encompasses a family of electrodriven techniques with distinct separation mechanisms and selectivities. 2 Relevant aspects of the technique such as high efficiency, high resolving power, high speed, full automation and a variety of injection based pre-concentration schemes and detection modes have all been extensively investigated. 3 In addition to these technological developments, much research has been directed towards demonstrating the versatility of CE for routine applications. 2,3 In this work, the versatility of capillary electrophoresis is illustrated by representative applications in several areas: clinical/forensic (hemoglobins in hemolysate, ketoacid metabolites in serum and opiates in hair), cosmetological (alkaloids, xanthines, terpenes and phenolic compounds in herbal extracts and essential oils and electrophoretic profile and aminogram of protein hydrolysates...