ABSTRACT:Changes in ambient temperature are known to alter both the hyperthermic and the serotonergic consequences of 3,4-methylenedioxymethamphetamine (MDMA). Metabolism of MDMA has been suggested to be a requisite for these neurotoxic effects, whereas the hyperthermic response is an important contributing variable. The aim of the present study was to investigate the interaction between ambient temperature, MDMA-induced thermodysregulation, and its metabolic disposition in monkeys. MDMA (1.5 mg/kg i.v.) was administered noncontingently at cool (18°C; n ؍ 5), room (24°C; n ؍ 7), and warm (31°C; n ؍ 7) ambient temperatures. For 240 min following MDMA administration, core temperature was recorded and blood samples were collected for analysis of MDMA and its metabolites 3,4-dihydroxymethamphetamine (HHMA), 3,4-dihydroxyamphetamine, and 3,4-methylenedioxyamphetamine (MDA). A dose of 1.5 mg/kg MDMA induced a hypothermic response at 18°C, a hyperthermic response at 31°C, and did not significantly change core temperature at 24°C. Regardless of ambient temperature, plasma MDMA concentrations reached maximum within 5 min, and HHMA was a major metabolite. Curiously, the approximate elimination half-life (t 1/2 ) of MDMA at 18°C (136 min) and 31°C (144 min) was increased compared with 24°C (90 min) and is most likely because of volume of distribution changes induced by core temperature alterations. At 18°C, there was a significantly higher MDA area under the concentration-time curve (AUC) and a trend for a lower HHMA AUC compared with 24°C and 31°C, suggesting that MDMA disposition was altered. Overall, induction of hypothermia in a cool environment by MDMA may alter its disposition. These results could have implications for MDMA-induced serotonergic consequences.