In this study, amphiphilic diblock copolymers were designed and synthesized via the incorporation of reversible additionfragmentation chain transfer radical polymerization (RAFT) and a subsequent grafting technique. Subsequently, Hg 2+ -sensitive water-soluble fluorescent polymeric micelles (FNs) were prepared by a reprecipitation strategy. The spectroscopic characteristics demonstrate that the fluorescein isothiocyanate (FITC) was successfully linked into the polymer. Due to the promoted reaction of desulfurization cyclization by Hg 2+ , the fluorescence of fluorescein in FNs was obviously quenched. The as-prepared FNs showed admirable Hg 2+ -sensitivity (detection limit: 54 nM), excellent water-solubility and high selectivity. In addition, FNs were successfully used to determine Hg 2+ in blood serum. We expected that the as-prepared FNs could perform potential applications in imaging, sensing, and bioanalytic chemistry.