1950
DOI: 10.1063/1.1747510
|View full text |Cite
|
Sign up to set email alerts
|

Determination of Molecular Shape by Osmotic Measurement

Abstract: The second coefficient A2 of osmotic pressure π of high-polymer solutions is calculated in the case of the rigid ovaloid. A2 is a function of the molecular shape and thus we can determine the shape of high polymers.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
113
0

Year Published

1963
1963
2012
2012

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 218 publications
(114 citation statements)
references
References 2 publications
1
113
0
Order By: Relevance
“…A thermodynamic effective diameter, σ B2 = 7.40 nm, follows from demanding equal second virial coefficients, B 2 (T ), of hard spheroid and effective hard sphere [36].…”
Section: Single-particle Propertiesmentioning
confidence: 99%
“…A thermodynamic effective diameter, σ B2 = 7.40 nm, follows from demanding equal second virial coefficients, B 2 (T ), of hard spheroid and effective hard sphere [36].…”
Section: Single-particle Propertiesmentioning
confidence: 99%
“…Normalized by the radius of a sphere with equal volume (the mean radius of curvature of a sphere is just the spherical radius), the mean radius of curvature R for an ellipsoid of revolution becomes [43] The value of R for the triaxial ellipsoid has also been worked out [49]. The electrostatic capacity of an object is de6ned by the following problem.…”
Section: B Mean Radius Of Curvaturementioning
confidence: 99%
“…This functional is always defined for a pair of objects. The "excluded volume" terminology comes from the statistical mechanics of gases, where this functional arises in the leading order concentration expansion (virial expansion) for the pressure in the case of gas particles that repel each other with a hard-core volume exclusion [43]. Isihara [43] gives a general expression for the excluded volume of two convex objects, involving the surface area ( V,") = V, + V2+( A, R, + A zRz )/4m .…”
Section: E Excluded Volumementioning
confidence: 99%
See 1 more Smart Citation
“…Although the predictions were later improved by Mayer-Saupe approach which completely neglects steric contributions in favour of dispersion interactions, Onsager's approach has been applied to more realistic nematogenic molecules. An early generalization was the analytic computation of E for a pair of ellipsoids of revolution by Isihara [2] through a format that relies on classical mathematical work on convex geometry, also used by Kihara [3] who obtained the formal expression of the excluded volume for a pair of equal convex bodies. A step forward was moved by Tjipto-Margo and Evans [4] who obtained a closed form for the excluded volume of biaxial ellipsoids which, at variance with Isihara's case, are only endowed with D 2h , instead of D ∞h , symmetry.…”
Section: Introductionmentioning
confidence: 99%