In the evidence-based diagnosis of nasal breathing disorders and the planning of corrective surgical procedures, it is not sufficient to examine only the general characteristics of airflow -averaged values of aerodynamic parameters such as airflow rate, pressure drop, and aerodynamic nasal resistance. It is necessary to investigate the effect of airflow on the mucosa at the micro level, which, when pathological conditions develop, leads to excessive drying of the nasal cavity surface. To do this, it is necessary to compare the width of the laminar boundary layerthe parietal region, where the maximum change in airflow velocity is observed, and the height of the nasal mucosa irregularity. The calculated values of the laminar airflow boundary layer were obtained from model representations of the complex spatial configuration of the nasal cavity using a circular channel of equivalent diameter.