Many types of lignocellulosic biomass show effective binding of toxic heavy metals from industrial and environmental effluents. Biosorption is an emerging option for conventional methods to remove heavy metals, some of them with even better efficiencies compared to conventional methods. Raw material for biosorption is typically low-cost and easily available, including agricultural waste or forest residues such as sawdust, bark, or needles. This review concentrates on the accumulation of heavy metals by lignocellulosic biosorbents. Thus far, biosorption has not been economically feasible on a large scale and needs further development for profitability. Industrial-scale wood-based biosorbent applications are especially still lacking. Moreover, due to legislative demands, there is an increasing need for accurate and reliable analytical methods for metal analysis of environmental and industrial effluents. In the future, biosorption processes are likely to become common, and the requirement for environmental monitoring will increase due to ever restricting regulations. This emphasizes not only the need for the development of feasible process solutions, but also a requirement for accurate analytical methods.