“…For consideration both viscous and elastic properties of polymeric melts, following viscoelastic model is implemented [5, 14]. where $\overline \sigma$ denotes (::) stress tensor; P , Lagrange multiplier, determined by boundary condition; $\overline \delta$ , identity tensor; $\overline c$ , Cauchy strain tensor; ${\overline e}_{\rm {f}}$ , flow strain rate tensor; $\overline \omega$ , vortex tensor; $\overline e$ , strain rate tensor; θ 0 ( T ), relaxation time; G 0 ( T ), tensile modulus; W , strain energy function W = W ( I 1 , I 2 ); I 1 and I 2 , primary and secondary strain tensor invariants; ψ, dimensionless parameter $(\psi = 0\;{\rm{at}}\;\overline \omega = 0\;{\rm{and} }\psi = I\;{\rm{at}}\;\overline \omega \ne 0)$ ; f ( I 1 , I 2 ), dimensionless function that defines relaxation time, and $2W^{\rm S} = W(I_1, I_2 ) + W(I_2, I_1 )$ , symmetric function of W .…”