The determination of alcohol, SO2, and total acids in wine through conventional laboratory techniques have some limitations related to the amount of the samples, analytical preparation of laboratory staff, and time to carry out the analysis. In recent years, spectroscopic and chromatographic methods have been proposed to determinate simultaneously multiple analytical parameters. The new methods claim the speed of analysis and easy execution. However, they need a validation process that guarantees the reliability of the results to be used in official determinations. This study aimed to evaluate the usefulness of FT-infrared reflectance (FT-IR) to quantify total acid, alcohol, and SO2 concentration in the wines. For this purpose, 156 DOC Italian wines were tested with IR technology, and results were compared to those obtained by official analysis methods. The comparison was performed using two non-parametric statistical methods: the Bland & Altman test and Passing & Bablok regression. Our results showed that the spectrophotometric methods make errors due to interfering contaminants in the sample that can be corrected by blank determination. Therefore, the spectrophotometric methods that use the infrared region of the electromagnetic spectrum can be used by the wine industry and regulators for the wine routine as an alternative to official methodologies.