In recent decades, production in high-volume/low-variety batches is replaced with low-volume/high-variety production type. This type of production demands excessive flows of both material and information. Recent advances in information and communication technologies (ICT), together with the concept of cyber-psychical system (CPS) enable the concept of Industry 4.0 (I4.0). In this paper, the performance of I4.0 related equipment implementation is presented in iterative assembly line balancing (ALB) process of a gearbox assembly line. Largest candidate rule method through spreadsheet simulation was used for tasks reallocations, with the objective to minimize the cycle time when the number of stations is fixed. Utilization of human analysts using snap back method for manual data gathering process still shown advantage over I4.0 equipment utilization in manual ALB. The assembly process is performed in the learning factory environment, and it is considered as very close to real industry process. The major conclusion is that I4.0 is excellent in process data monitoring and product tracking, but activities to be performed to effectively exploit I4.0 is demanding for task reallocations during the balancing procedure. Nevertheless, future enhancements of I4.0 system are listed to bridge this gap and to increase I4.0 system usefulness in the manual assembly line balancing process.