In this work, density functional theory is applied to understand the conformational stability and solvent effects on glycolic acid conformers in different solvents. In addition, the role of intramolecular hydrogen bond (H-bond) interactions in the stability of conformers are investigated. The molecular geometries of selected conformers are optimized using B3LYP and PBE0 functionals with 6-311[Formula: see text]G(d,p) basis set. The effects of solvent on the geometrical parameters, relative stability, dipole moment, chemical hardness, chemical potential, etc. are studied for the conformers of glycolic acid. Our calculations show that the order of stability of the SSC and AAT conformers does not change in liquid phase. However, the energy of SSC and AAT conformers is very close to each other in water media. In water media, strong intramolecular H-bond interaction is present in AAT conformer which causes the energy of AAT conformer to be very close to that of SSC conformer. This may be due to the influence of water media.