Sulfonate esters have been recognized as potential genotoxic impurities (PGIs) in pharmaceuticals. An LC-MS/MS method was developed and validated for the simultaneous determination of 15 sulfonate esters, including methyl, ethyl, propyl, isopropyl, and n-butyl esters of methanesulfonate, benzenesulfonate, and p-toluenesulfonate in drug products. The method utilized atmospheric pressure chemical ionization (APCI) in multiple reaction monitoring (MRM) mode for the quantitation of impurities. The method employed an ODS column as the stationary phase and water-acetonitrile as the solvents for gradient elution without derivatization steps. The method was specific, linear, accurate, precise, and robust. Recoveries of the sulfonic esters from three drug matrices were observed in the range of 91.6∼109.0% with an RSD of not greater than 17.9% at the concentration of the LOQ and in the range of 90.4%∼105.2% with an RSD of not greater than 7.1% at the concentration of 50 ng/mL for the methanesulfonates and 10 ng/mL for the benzenesulfonates and p-toluenesulfonates. The LOD was not greater than 15 ng/mL, 2 ng/mL, and 1 ng/mL for the methanesulfonate, benzenesulfonate, and p-toluenesulfonate esters, respectively. This method was sufficiently sensitive to detect the 15 PGIs in the phentolamine mesylate tablet, amlodipine besylate tablet, and tosufloxacin tosylate tablet. This analytical method is a direct, specific, rapid, and accurate quality control tool for the determination of the 15 sulfonate esters that are most likely to exist in drug products.